SPO600 Lab2 (Pt.1)
In this Lab, I was provided with below 6502 processor assembly program. The program is to display a logo on the screen. The logo moves with increment of x and y by 1. When it reach the edge, it will go back to the initial position of top left (x=0, y=0).
Original code is as below (Copyright details in the program beginning comment):-
; ; draw-image-subroutine.6502 ; ; This is a routine that can place an arbitrary ; rectangular image on to the screen at given ; coordinates. ; ; Chris Tyler 2024-09-17 ; Licensed under GPLv2+ ; ; ; The subroutine is below starting at the ; label "DRAW:" ; ; Test code for our subroutine ; Moves an image diagonally across the screen ; Zero-page variables define XPOS $20 define YPOS $21 START: ; Set up the width and height elements of the data structure LDA #$05 STA $12 ; IMAGE WIDTH STA $13 ; IMAGE HEIGHT ; Set initial position X=Y=0 LDA #$00 STA XPOS STA YPOS ; Main loop for diagonal animation MAINLOOP: ; Set pointer to the image ; Use G_O or G_X as desired ; The syntax #<LABEL returns the low byte of LABEL ; The syntax #>LABEL returns the high byte of LABEL LDA #<G_O STA $10 LDA #>G_O STA $11 ; Place the image on the screen LDA #$10 ; Address in zeropage of the data structure LDX XPOS ; X position LDY YPOS ; Y position JSR DRAW ; Call the subroutine ; Delay to show the image LDY #$00 LDX #$50 DELAY: DEY BNE DELAY DEX BNE DELAY ; Set pointer to the blank graphic LDA #<G_BLANK STA $10 LDA #>G_BLANK STA $11 ; Draw the blank graphic to clear the old image LDA #$10 ; LOCATION OF DATA STRUCTURE LDX XPOS LDY YPOS JSR DRAW ; Increment the position INC XPOS INC YPOS ; Continue for 29 frames of animation LDA #28 CMP XPOS BNE MAINLOOP ; Repeat infinitely JMP START ; ========================================== ; ; DRAW :: Subroutine to draw an image on ; the bitmapped display ; ; Entry conditions: ; A - location in zero page of: ; a pointer to the image (2 bytes) ; followed by the image width (1 byte) ; followed by the image height (1 byte) ; X - horizontal location to put the image ; Y - vertical location to put the image ; ; Exit conditions: ; All registers are undefined ; ; Zero-page memory locations define IMGPTR $A0 define IMGPTRH $A1 define IMGWIDTH $A2 define IMGHEIGHT $A3 define SCRPTR $A4 define SCRPTRH $A5 define SCRX $A6 define SCRY $A7 DRAW: ; SAVE THE X AND Y REG VALUES STY SCRY STX SCRX ; GET THE DATA STRUCTURE TAY LDA $0000,Y STA IMGPTR LDA $0001,Y STA IMGPTRH LDA $0002,Y STA IMGWIDTH LDA $0003,Y STA IMGHEIGHT ; CALCULATE THE START OF THE IMAGE ON ; SCREEN AND PLACE IN SCRPTRH ; ; THIS IS $0200 (START OF SCREEN) + ; SCRX + SCRY * 32 ; ; WE'LL DO THE MULTIPLICATION FIRST ; START BY PLACING SCRY INTO SCRPTR LDA #$00 STA SCRPTRH LDA SCRY STA SCRPTR ; NOW DO 5 LEFT SHIFTS TO MULTIPLY BY 32 LDY #$05 ; NUMBER OF SHIFTS MULT: ASL SCRPTR ; PERFORM 16-BIT LEFT SHIFT ROL SCRPTRH DEY BNE MULT ; NOW ADD THE X VALUE LDA SCRX CLC ADC SCRPTR STA SCRPTR LDA #$00 ADC SCRPTRH STA SCRPTRH ; NOW ADD THE SCREEN BASE ADDRESS OF $0200 ; SINCE THE LOW BYTE IS $00 WE CAN IGNORE IT LDA #$02 CLC ADC SCRPTRH STA SCRPTRH ; NOTE WE COULD HAVE DONE TWO: INC SCRPTRH ; NOW WE HAVE A POINTER TO THE IMAGE IN MEM ; COPY A ROW OF IMAGE DATA COPYROW: LDY #$00 ROWLOOP: LDA (IMGPTR),Y STA (SCRPTR),Y INY CPY IMGWIDTH BNE ROWLOOP ; NOW WE NEED TO ADVANCE TO THE NEXT ROW ; ADD IMGWIDTH TO THE IMGPTR LDA IMGWIDTH CLC ADC IMGPTR STA IMGPTR LDA #$00 ADC IMGPTRH STA IMGPTRH ; ADD 32 TO THE SCRPTR LDA #32 CLC ADC SCRPTR STA SCRPTR LDA #$00 ADC SCRPTRH STA SCRPTRH ; DECREMENT THE LINE COUNT AND SEE IF WE'RE ; DONE DEC IMGHEIGHT BNE COPYROW RTS ; ========================================== ; 5x5 pixel images ; Image of a blue "O" on black background G_O: DCB $00,$0e,$0e,$0e,$00 DCB $0e,$00,$00,$00,$0e DCB $0e,$00,$00,$00,$0e DCB $0e,$00,$00,$00,$0e DCB $00,$0e,$0e,$0e,$00 ; Image of a yellow "X" on a black background G_X: DCB $07,$00,$00,$00,$07 DCB $00,$07,$00,$07,$00 DCB $00,$00,$07,$00,$00 DCB $00,$07,$00,$07,$00 DCB $07,$00,$00,$00,$07 ; Image of a black square G_BLANK: DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00
Task:
Our target is to do the follows:-
1. select another starting position for the logo
2. Make the logo bounce when it hits the edge of the bitmapped screen.
In order to achieve target 2, we need to assign a memory to record the moving directions of the logo in x and y direction. Those memory will be the x, y velocity of the logo. Then, instead of making the logo position always increase one, we make the x-position increase by x-velocity and y-position increased by y-velocity.
Then, we keep checking the position of the ball. If it reach the edge of the screen, we make the velocity in that direction reverse.
Solution as below. The highlighted part is the revised code. The yellow highlighted code is to set the start positions and velocities. The green highlighted part is to update the position of the logo by adding the velocity to the position. The blue highlighted part is to check the position of the logo to decide if the velocity have to be revised.
Modified code:
; draw-image-subroutine.6502 ; ; This is a routine that can place an arbitrary ; rectangular image on to the screen at given ; coordinates. ; ; Chris Tyler 2024-09-17 ; Licensed under GPLv2+ ; ; ; The subroutine is below starting at the ; label "DRAW:" ; ; Test code for our subroutine ; Moves an image diagonally across the screen ; Zero-page variables define XPOS $20 define YPOS $21 define XDIR $22 define YDIR $23 START: ; Set up the width and height elements of the data structure LDA #$05 STA $12 ; IMAGE WIDTH STA $13 ; IMAGE HEIGHT ; Set initial position LDA #$05 STA XPOS LDA #$00 STA YPOS ; Set initial direction LDA #$01 STA XDIR LDA #$01 STA YDIR ; Main loop for diagonal animation MAINLOOP: ; Set pointer to the image ; Use G_O or G_X as desired ; The syntax #<LABEL returns the low byte of LABEL ; The syntax #>LABEL returns the high byte of LABEL LDA #<G_X STA $10 LDA #>G_X STA $11 ; Place the image on the screen LDA #$10 ; Address in zeropage of the data structure LDX XPOS ; X position LDY YPOS ; Y position JSR DRAW ; Call the subroutine ; Delay to show the image LDY #$00 LDX #$50 DELAY: DEY BNE DELAY DEX BNE DELAY ; Set pointer to the blank graphic LDA #<G_BLANK STA $10 LDA #>G_BLANK STA $11 ; Draw the blank graphic to clear the old image LDA #$10 ; LOCATION OF DATA STRUCTURE LDX XPOS LDY YPOS JSR DRAW ; Increment the position LDA XDIR CLC ADC XPOS STA XPOS LDA YDIR CLC ADC YPOS STA YPOS ;check if X reach right edge LDA XPOS CMP #$1b BEQ X_BOUNCE X_LEFTCHECK: ;check if X reach left edge LDA XPOS BEQ X_BOUNCE JMP Y_BOTCHECK X_BOUNCE: LDA $00 SEC SBC XDIR STA XDIR ;check if Y reach Bottom edge Y_BOTCHECK: LDA YPOS CMP #$1b BEQ Y_BOUNCE ;check if Y reach TOP edge Y_TOPCHECK: LDA YPOS BEQ Y_BOUNCE JMP END_CHECK Y_BOUNCE: LDA #$00 SEC SBC YDIR STA YDIR END_CHECK: BNE MAINLOOP ; ========================================== ; ; DRAW :: Subroutine to draw an image on ; the bitmapped display ; ; Entry conditions: ; A - location in zero page of: ; a pointer to the image (2 bytes) ; followed by the image width (1 byte) ; followed by the image height (1 byte) ; X - horizontal location to put the image ; Y - vertical location to put the image ; ; Exit conditions: ; All registers are undefined ; ; Zero-page memory locations define IMGPTR $A0 define IMGPTRH $A1 define IMGWIDTH $A2 define IMGHEIGHT $A3 define SCRPTR $A4 define SCRPTRH $A5 define SCRX $A6 define SCRY $A7 DRAW: ; SAVE THE X AND Y REG VALUES STY SCRY STX SCRX ; GET THE DATA STRUCTURE TAY LDA $0000,Y STA IMGPTR LDA $0001,Y STA IMGPTRH LDA $0002,Y STA IMGWIDTH LDA $0003,Y STA IMGHEIGHT ; CALCULATE THE START OF THE IMAGE ON ; SCREEN AND PLACE IN SCRPTRH ; ; THIS IS $0200 (START OF SCREEN) + ; SCRX + SCRY * 32 ; ; WE'LL DO THE MULTIPLICATION FIRST ; START BY PLACING SCRY INTO SCRPTR LDA #$00 STA SCRPTRH LDA SCRY STA SCRPTR ; NOW DO 5 LEFT SHIFTS TO MULTIPLY BY 32 LDY #$05 ; NUMBER OF SHIFTS MULT: ASL SCRPTR ; PERFORM 16-BIT LEFT SHIFT ROL SCRPTRH DEY BNE MULT ; NOW ADD THE X VALUE LDA SCRX CLC ADC SCRPTR STA SCRPTR LDA #$00 ADC SCRPTRH STA SCRPTRH ; NOW ADD THE SCREEN BASE ADDRESS OF $0200 ; SINCE THE LOW BYTE IS $00 WE CAN IGNORE IT LDA #$02 CLC ADC SCRPTRH STA SCRPTRH ; NOTE WE COULD HAVE DONE TWO: INC SCRPTRH ; NOW WE HAVE A POINTER TO THE IMAGE IN MEM ; COPY A ROW OF IMAGE DATA COPYROW: LDY #$00 ROWLOOP: LDA (IMGPTR),Y STA (SCRPTR),Y INY CPY IMGWIDTH BNE ROWLOOP ; NOW WE NEED TO ADVANCE TO THE NEXT ROW ; ADD IMGWIDTH TO THE IMGPTR LDA IMGWIDTH CLC ADC IMGPTR STA IMGPTR LDA #$00 ADC IMGPTRH STA IMGPTRH ; ADD 32 TO THE SCRPTR LDA #32 CLC ADC SCRPTR STA SCRPTR LDA #$00 ADC SCRPTRH STA SCRPTRH ; DECREMENT THE LINE COUNT AND SEE IF WE'RE ; DONE DEC IMGHEIGHT BNE COPYROW RTS ; ========================================== ; 5x5 pixel images ; Image of a blue "O" on black background G_O: DCB $00,$0e,$0e,$0e,$00 DCB $0e,$00,$00,$00,$0e DCB $0e,$00,$00,$00,$0e DCB $0e,$00,$00,$00,$0e DCB $00,$0e,$0e,$0e,$00 ; Image of a yellow "X" on a black background G_X: DCB $07,$00,$00,$00,$07 DCB $00,$07,$00,$07,$00 DCB $00,$00,$07,$00,$00 DCB $00,$07,$00,$07,$00 DCB $07,$00,$00,$00,$07 ; Image of a black square G_BLANK: DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00
Comments
Post a Comment