SPO600 Lab2 (Pt.1)

 In this Lab, I was provided with below 6502 processor assembly program. The program is to display a logo on the screen. The logo moves with increment of x and y by 1. When it reach the edge, it will go back to the initial position of top left (x=0, y=0). 

Original code is as below (Copyright details in the program beginning comment):-

;
; draw-image-subroutine.6502
;
; This is a routine that can place an arbitrary 
; rectangular image on to the screen at given
; coordinates.
;
; Chris Tyler 2024-09-17
; Licensed under GPLv2+
;

;
; The subroutine is below starting at the 
; label "DRAW:"
;

; Test code for our subroutine
; Moves an image diagonally across the screen

; Zero-page variables
define XPOS $20
define YPOS $21


START:

; Set up the width and height elements of the data structure
  LDA #$05
  STA $12       ; IMAGE WIDTH
  STA $13       ; IMAGE HEIGHT

; Set initial position X=Y=0
  LDA #$00
  STA XPOS
  STA YPOS

; Main loop for diagonal animation
MAINLOOP:

  ; Set pointer to the image
  ; Use G_O or G_X as desired
  ; The syntax #<LABEL returns the low byte of LABEL
  ; The syntax #>LABEL returns the high byte of LABEL

  LDA #<G_O
  STA $10
  LDA #>G_O
  STA $11

  ; Place the image on the screen
  LDA #$10  ; Address in zeropage of the data structure
  LDX XPOS  ; X position
  LDY YPOS  ; Y position
  JSR DRAW  ; Call the subroutine

  ; Delay to show the image
  LDY #$00
  LDX #$50
DELAY:
  DEY
  BNE DELAY
  DEX
  BNE DELAY

  ; Set pointer to the blank graphic
  LDA #<G_BLANK
  STA $10
  LDA #>G_BLANK
  STA $11

  ; Draw the blank graphic to clear the old image
  LDA #$10 ; LOCATION OF DATA STRUCTURE
  LDX XPOS
  LDY YPOS
  JSR DRAW

  ; Increment the position
  INC XPOS
  INC YPOS

  ; Continue for 29 frames of animation
  LDA #28
  CMP XPOS
  BNE MAINLOOP

  ; Repeat infinitely
  JMP START

; ==========================================
;
; DRAW :: Subroutine to draw an image on 
;         the bitmapped display
;
; Entry conditions:
;    A - location in zero page of: 
;        a pointer to the image (2 bytes)
;        followed by the image width (1 byte)
;        followed by the image height (1 byte)
;    X - horizontal location to put the image
;    Y - vertical location to put the image
;
; Exit conditions:
;    All registers are undefined
;
; Zero-page memory locations
define IMGPTR    $A0
define IMGPTRH   $A1
define IMGWIDTH  $A2
define IMGHEIGHT $A3
define SCRPTR    $A4
define SCRPTRH   $A5
define SCRX      $A6
define SCRY      $A7

DRAW:
  ; SAVE THE X AND Y REG VALUES
  STY SCRY
  STX SCRX

  ; GET THE DATA STRUCTURE
  TAY
  LDA $0000,Y
  STA IMGPTR
  LDA $0001,Y
  STA IMGPTRH
  LDA $0002,Y
  STA IMGWIDTH
  LDA $0003,Y
  STA IMGHEIGHT

  ; CALCULATE THE START OF THE IMAGE ON
  ; SCREEN AND PLACE IN SCRPTRH
  ;
  ; THIS IS $0200 (START OF SCREEN) +
  ; SCRX + SCRY * 32
  ; 
  ; WE'LL DO THE MULTIPLICATION FIRST
  ; START BY PLACING SCRY INTO SCRPTR
  LDA #$00
  STA SCRPTRH
  LDA SCRY
  STA SCRPTR
  ; NOW DO 5 LEFT SHIFTS TO MULTIPLY BY 32
  LDY #$05     ; NUMBER OF SHIFTS
MULT:
  ASL SCRPTR   ; PERFORM 16-BIT LEFT SHIFT
  ROL SCRPTRH
  DEY
  BNE MULT

  ; NOW ADD THE X VALUE
  LDA SCRX
  CLC
  ADC SCRPTR
  STA SCRPTR
  LDA #$00
  ADC SCRPTRH
  STA SCRPTRH

  ; NOW ADD THE SCREEN BASE ADDRESS OF $0200
  ; SINCE THE LOW BYTE IS $00 WE CAN IGNORE IT
  LDA #$02
  CLC
  ADC SCRPTRH
  STA SCRPTRH
  ; NOTE WE COULD HAVE DONE TWO: INC SCRPTRH

  ; NOW WE HAVE A POINTER TO THE IMAGE IN MEM
  ; COPY A ROW OF IMAGE DATA
COPYROW:
  LDY #$00
ROWLOOP:
  LDA (IMGPTR),Y
  STA (SCRPTR),Y
  INY
  CPY IMGWIDTH
  BNE ROWLOOP

  ; NOW WE NEED TO ADVANCE TO THE NEXT ROW
  ; ADD IMGWIDTH TO THE IMGPTR
  LDA IMGWIDTH
  CLC
  ADC IMGPTR
  STA IMGPTR
  LDA #$00
  ADC IMGPTRH
  STA IMGPTRH
 
  ; ADD 32 TO THE SCRPTR
  LDA #32
  CLC
  ADC SCRPTR
  STA SCRPTR
  LDA #$00
  ADC SCRPTRH
  STA SCRPTRH

  ; DECREMENT THE LINE COUNT AND SEE IF WE'RE
  ; DONE
  DEC IMGHEIGHT
  BNE COPYROW

  RTS

; ==========================================

; 5x5 pixel images

; Image of a blue "O" on black background
G_O:
DCB $00,$0e,$0e,$0e,$00
DCB $0e,$00,$00,$00,$0e
DCB $0e,$00,$00,$00,$0e
DCB $0e,$00,$00,$00,$0e
DCB $00,$0e,$0e,$0e,$00

; Image of a yellow "X" on a black background
G_X:
DCB $07,$00,$00,$00,$07
DCB $00,$07,$00,$07,$00
DCB $00,$00,$07,$00,$00
DCB $00,$07,$00,$07,$00
DCB $07,$00,$00,$00,$07

; Image of a black square
G_BLANK:
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00
Sample Output:


Task:

Our target is to do the follows:-

1. select another starting position for the logo

2. Make the logo bounce when it hits the edge of the bitmapped screen. 

In order to achieve target 2, we need to assign a memory to record the moving directions of the logo in x and y direction. Those memory will be the x, y velocity of the logo. Then, instead of making the logo position always increase one, we make the x-position increase by x-velocity and y-position increased by y-velocity.

Then, we keep checking the position of the ball. If it reach the edge of the screen, we make the velocity in that direction reverse.

Solution as below. The highlighted part is the revised code. The yellow highlighted code is to set the start positions and velocities. The green highlighted part is to update the position of the logo by adding the velocity to the position. The blue highlighted part is to check the position of the logo to decide if the velocity have to be revised.

Modified code:


; draw-image-subroutine.6502
;
; This is a routine that can place an arbitrary 
; rectangular image on to the screen at given
; coordinates.
; 
; Chris Tyler 2024-09-17
; Licensed under GPLv2+
;  

;
; The subroutine is below starting at the 
; label "DRAW:"
;

; Test code for our subroutine
; Moves an image diagonally across the screen

; Zero-page variables
define XPOS $20
define YPOS $21
define XDIR $22
define YDIR $23

START:

; Set up the width and height elements of the data structure
  LDA #$05
  STA $12       ; IMAGE WIDTH
  STA $13       ; IMAGE HEIGHT

; Set initial position 
  LDA #$05   
  STA XPOS
  LDA #$00
  STA YPOS
; Set initial direction
  LDA #$01
  STA XDIR
  LDA #$01
  STA YDIR

; Main loop for diagonal animation
MAINLOOP:

  ; Set pointer to the image
  ; Use G_O or G_X as desired
  ; The syntax #<LABEL returns the low byte of LABEL
  ; The syntax #>LABEL returns the high byte of LABEL

  LDA #<G_X
  STA $10
  LDA #>G_X
  STA $11

  ; Place the image on the screen
  LDA #$10  ; Address in zeropage of the data structure
  LDX XPOS  ; X position
  LDY YPOS  ; Y position
  JSR DRAW  ; Call the subroutine

  ; Delay to show the image
  LDY #$00
  LDX #$50
DELAY:
  DEY
  BNE DELAY
  DEX
  BNE DELAY

  ; Set pointer to the blank graphic
  LDA #<G_BLANK
  STA $10
  LDA #>G_BLANK
  STA $11

  ; Draw the blank graphic to clear the old image
  LDA #$10 ; LOCATION OF DATA STRUCTURE
  LDX XPOS
  LDY YPOS
  JSR DRAW

  ; Increment the position
  LDA XDIR
  CLC
  ADC XPOS
  STA XPOS
  LDA YDIR
  CLC
  ADC YPOS
  STA YPOS

  ;check if X reach right edge
  LDA XPOS
  CMP #$1b
  BEQ X_BOUNCE
X_LEFTCHECK:  ;check if X reach left edge
  LDA XPOS
  BEQ X_BOUNCE
  JMP Y_BOTCHECK
X_BOUNCE:
  LDA $00
  SEC
  SBC XDIR
  STA XDIR

  ;check if Y reach Bottom edge
Y_BOTCHECK:  LDA YPOS
  CMP #$1b
  BEQ Y_BOUNCE

 ;check if Y reach TOP edge
Y_TOPCHECK:  LDA YPOS
  BEQ Y_BOUNCE
  JMP END_CHECK
Y_BOUNCE:
  LDA #$00
  SEC
  SBC YDIR
  STA YDIR
END_CHECK:

  BNE MAINLOOP

; ==========================================
;
; DRAW :: Subroutine to draw an image on 
;         the bitmapped display
;
; Entry conditions:
;    A - location in zero page of: 
;        a pointer to the image (2 bytes)
;        followed by the image width (1 byte)
;        followed by the image height (1 byte)
;    X - horizontal location to put the image
;    Y - vertical location to put the image
;
; Exit conditions:
;    All registers are undefined
;
; Zero-page memory locations
define IMGPTR    $A0
define IMGPTRH   $A1
define IMGWIDTH  $A2
define IMGHEIGHT $A3
define SCRPTR    $A4
define SCRPTRH   $A5
define SCRX      $A6
define SCRY      $A7

DRAW:
  ; SAVE THE X AND Y REG VALUES
  STY SCRY
  STX SCRX

  ; GET THE DATA STRUCTURE
  TAY
  LDA $0000,Y
  STA IMGPTR
  LDA $0001,Y
  STA IMGPTRH
  LDA $0002,Y
  STA IMGWIDTH
  LDA $0003,Y
  STA IMGHEIGHT

  ; CALCULATE THE START OF THE IMAGE ON
  ; SCREEN AND PLACE IN SCRPTRH
  ;
  ; THIS IS $0200 (START OF SCREEN) +
  ; SCRX + SCRY * 32
  ; 
  ; WE'LL DO THE MULTIPLICATION FIRST
  ; START BY PLACING SCRY INTO SCRPTR
  LDA #$00
  STA SCRPTRH
  LDA SCRY
  STA SCRPTR
  ; NOW DO 5 LEFT SHIFTS TO MULTIPLY BY 32
  LDY #$05     ; NUMBER OF SHIFTS
MULT:
  ASL SCRPTR   ; PERFORM 16-BIT LEFT SHIFT
  ROL SCRPTRH
  DEY
  BNE MULT

  ; NOW ADD THE X VALUE
  LDA SCRX
  CLC
  ADC SCRPTR
  STA SCRPTR
  LDA #$00
  ADC SCRPTRH
  STA SCRPTRH

  ; NOW ADD THE SCREEN BASE ADDRESS OF $0200
  ; SINCE THE LOW BYTE IS $00 WE CAN IGNORE IT
  LDA #$02
  CLC
  ADC SCRPTRH
  STA SCRPTRH
  ; NOTE WE COULD HAVE DONE TWO: INC SCRPTRH

  ; NOW WE HAVE A POINTER TO THE IMAGE IN MEM
  ; COPY A ROW OF IMAGE DATA
COPYROW:
  LDY #$00
ROWLOOP:
  LDA (IMGPTR),Y
  STA (SCRPTR),Y
  INY
  CPY IMGWIDTH
  BNE ROWLOOP

  ; NOW WE NEED TO ADVANCE TO THE NEXT ROW
  ; ADD IMGWIDTH TO THE IMGPTR
  LDA IMGWIDTH
  CLC
  ADC IMGPTR
  STA IMGPTR
  LDA #$00
  ADC IMGPTRH
  STA IMGPTRH
 
  ; ADD 32 TO THE SCRPTR
  LDA #32
  CLC
  ADC SCRPTR
  STA SCRPTR
  LDA #$00
  ADC SCRPTRH
  STA SCRPTRH

  ; DECREMENT THE LINE COUNT AND SEE IF WE'RE
  ; DONE
  DEC IMGHEIGHT
  BNE COPYROW

  RTS

; ==========================================

; 5x5 pixel images

; Image of a blue "O" on black background
G_O:
DCB $00,$0e,$0e,$0e,$00
DCB $0e,$00,$00,$00,$0e
DCB $0e,$00,$00,$00,$0e
DCB $0e,$00,$00,$00,$0e
DCB $00,$0e,$0e,$0e,$00

; Image of a yellow "X" on a black background
G_X:
DCB $07,$00,$00,$00,$07
DCB $00,$07,$00,$07,$00
DCB $00,$00,$07,$00,$00
DCB $00,$07,$00,$07,$00
DCB $07,$00,$00,$00,$07

; Image of a black square
G_BLANK:
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00
output:








Comments

Popular posts from this blog

SPO600 Project Stage 1 (Pt.1) - Create a GCC Pass

SPO600 Project Stage 2 (Pt.1) - GCC pass locating clone function

SPO600 Project Stage 3 - Identify clones of multiple functions and compare them